Methods in Differential Equations

Questions

Q1.

(a) Find, in the form y = f(x), the general solution of the equation

$$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x = 2\cos^3 x \sin x + 1, \quad 0 < x < \frac{\pi}{2}$$
(8)

Given that $y = 5\sqrt{2}$ when $x = \frac{\pi}{4}$

(b) find the value of y when $x = \frac{\pi}{6}$, giving your answer in the form $a + b\sqrt{3}$, where a and b are rational numbers to be found.

(3)

(Total for question = 11 marks)

Q2.

(a) Determine the general solution of the differential equation

$$\frac{dy}{\cos x dx} + y \sin x = e^{2x} \cos^2 x$$
giving your answer in the form $y = f(x)$

(3)

Given that y = 3 when x = 0

(b) determine the smallest positive value of x for which y = 0

(3)

(Total for question = 6 marks)

Q3.

(a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} = 26\sin 3x$$

(8)

(b) Find the particular solution of this differential equation for which y = 0 and $\frac{dy}{dx} = 0$ when x = 0

(5)

(Total for question = 13 marks)

Mark Scheme – Methods in Differential Equations

Q1.

Question Number	Scheme	Notes	Marks
	$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x$	$x = 2\cos^3 x \sin x + 1$	
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + y\tan x = 2\cos^2 x\sin x + \frac{1}{\cos x}$	Divides by cos x LHS both terms divided RHS min 1 term divided	M1
	$I = e^{\int \tan x dx} = e^{\ln \sec x} = \sec x$	M1: Attempt integrating factor $e^{\int \tan x dx} \text{ needed}$ A1: Correct integrating factor,} $\sec x \text{ or } \frac{1}{\cos x}$	dM1A1
	$y \sec x = \int (2\sin x \cos x + \sec^2 x) dx$	Multiply through by their IF and integrate LHS (integration may be done later) $yI = \int (\text{their RHS}) I dx$	M1
	$y \sec x = -\frac{1}{2}\cos 2x + \tan x (+c)$	M1: Attempt integration of at least one term on RHS (provided both sides have been multiplied by their IF.) OR $\sec^2 x \rightarrow K \tan x$ A1: $-\frac{1}{2} \cos 2x$ or equivalent integration of $2 \sin x \cos x$ ($\sin^2 x$ or $-\cos^2 x$) A1: $\tan x$ constant not needed.	M1A1A1
	$y = \left(-\frac{1}{2}\cos 2x + \tan x + c\right)\cos x$ $y = \left(-\cos^2 x + \tan x + c\right)\cos x$ $y = \left(\sin^2 x + \tan x + c\right)\cos x$	Include the constant and deal with it correctly. Must start $y =$ Or equivalent eg $y = -\frac{1}{2}\cos 2x \cos x + \sin x + c \cos x$ Follow through from the line above	A1ft
			(8)
(b)	$x = \frac{\pi}{4} \Rightarrow 5\sqrt{2} = \dots \Rightarrow c = \dots$	Substitutes for x and y and solves for c (If substitution not shown award for at least one term evaluated correctly.)	М1
	$x = \frac{\pi}{6} \Rightarrow y = \dots$	Substitutes $x = \frac{\pi}{6}$ to find a value for y	M1
	$y = \frac{1}{2} + \frac{35}{8} \sqrt{3}$ or $y = 0.5 + 4.375 \sqrt{3}$	Must be in given form. Equivalent fractions allowed.	A1cao
	1157		(3)
NB	(b) There may be no working shown due to use of calculator. In such cases: Final answer correct (and in required form with no decimals instead of $\sqrt{3}$ seen), score 3/3. Final answer incorrect (or decimals instead of $\sqrt{3}$ seen), score 0/3. This applies whether (a) is correct or not.		
			Total 11

Q2.

Question	Scheme	Marks	AOs
(a)	$\frac{dy}{dx} + y \tan x = e^{2x} \cos x$ $IF = e^{\int \tan x dx} = e^{\ln \sec x} = \sec x \Rightarrow \sec x \frac{dy}{dx} + y \sec x \tan x$ $= e^{2x}$ $\Rightarrow y \sec x = \int e^{2x} dx$	M1 A1 A1 (3) M1 M1	3.1a
	$y \sec x = \frac{1}{2}e^{2x}(+c)$	A1	1.1b
	$y = \left(\frac{1}{2}e^{2x} + c\right)\cos x$	A1	1.1b
		(3)	
(b)	$x = 0, y = 3 \Rightarrow c = \{2.5\}$	M1	3.1a
	$y = \left(\frac{1}{2}e^{2x} + \frac{5}{2}\right)\cos x = 0 \Rightarrow \cos x = 0 \Rightarrow x = \dots$	M1	1.1b
	$x = \frac{\pi}{2}$	A1	1.1b
		(3)	
		(6 r	narks)

Notes:

(a)

M1: Finds the integrating factor and attempts the solution of the differential equation. Look for I.F. = $e^{\int tan x dx} \Rightarrow y \times '$ their I.F.' = $\int e^{2x} \cos x \times '$ their I.F.' dx

A1: Correct solution condone missing + c

Al: Correct general solution, Accept equivalents of the form y = f(x), such as $y = \frac{e^{2x}}{2 \sec x} + \frac{c}{\sec x}$

(b)

M1: Uses x = 0 y = 3 to find the constant of integration. Allow if done as part of part (a) and allow for their answer to (a) as long as it has a constant of integration to find.

M1: Sets y = 0 in an equation of the form $y = (Ae^{2x} + c)\cos x$ (oe) where A is 1, 2 or $\frac{1}{2}$, with

their c or constant c and makes a valid attempt to solve the equation to find a value for x. (Allow even if the constant of integration has not been found).

Al: Depends on both M's. Awrt 1.57 or $\frac{\pi}{2}$ only. There must have been an attempt to find the constant of integration, but allow from a correct answer to (a) as long as a positive value for c has been found (can be scored from implicit form).

Q3.

Question Number	Scheme	Notes	Marks
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} = 20$	5sin3x	
(a)	$m^2 - 2m = 0 \Longrightarrow m = 0, 2$	Solves AE	M1
	$(CF \text{ or } y =) A + Be^{2x} \text{ or } Ae^0 + Be^{2x} \text{ oe}$	Correct CF (CF or $y = \text{not needed}$)	A1
	(PI or $y = a \cos 3x + b \sin 3x$	Correct form for PI (PI or y = not needed)	B1
	$\frac{dy}{dx} = -3a\sin 3x + 3b\cos 3x, \frac{d^2y}{dx^2} = -9a\cos 3x - 9b\sin 3x$		M1A1
	M1: Differentiates twice; change of trig functions needed, ±1 or ±3 for coeffs for first derivative, ±1, ±3 or ±9 for second derivative (1/3 etc indicates integration) A1: Correct derivatives		
	$-9a\cos 3x - 9b\sin 3x + 6a\sin 3x$	$x - 6b\cos 3x = 26\sin 3x$	
	∴ $-9a - 6b = 0$, $-9b + 6a = 26 \Rightarrow a =, b =$	Substitutes and forms simultaneous equations (by equating coeffs) and attempts to solve for a and b Depends on the second M mark	dM1
3	$a = \frac{4}{3}, b = -2$	Correct a and b	A1
	$a = \frac{4}{3}, b = -2$ $y = A + Be^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x$	Forms the GS (ft their CF and PI) Must start y =	A1ft (8)
(b)	$0 = A + B + \frac{4}{3}$	Substitutes $x = 0$ and $y = 0$ into their GS	M1
	$\left(\frac{dy}{dx}\right) = 2Be^{2x} - 4\sin 3x - 6\cos 3x \Rightarrow 0 = 2B - 6$ Differentiates and substitutes $x = 0$ and $y' = 0$ (change of trig functions needed, ± 1 or ± 3 for coeffs)		M1
	$0 = A + B + \frac{4}{3}, \ 0 = 2B - 6 \Rightarrow A =, B =$	Solves simultaneously to obtain values for A and B Depends on the second M mark	dM1
	$A = \frac{-13}{3}, B = 3$	Correct values	A1
	$y = 3e^{2x} - \frac{13}{3} + \frac{4}{3}\cos 3x - 2\sin 3x$	Follow through their GS and A and B Must start $y =$	A1ft (5)
	70. 2000		Total 13

ALT for	$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 26\sin 3x \Rightarrow \frac{dy}{dx} - 2y = -\frac{26}{3}\cos 3x$	M1: Integrates both sides wrt x	
(a)	$\frac{dx^2}{dx^2} - 2\frac{dx}{dx} = 20\sin 3x \rightarrow \frac{dx}{dx} - 2y = -\frac{1}{3}\cos 3x$	A1: Correct expression	M1A1
	$I = e^{\int -2dx} = e^{-2x}$	Correct integrating factor	B1
	$ye^{-2x} = \int e^{-2x} \left(-\frac{26}{3}\cos 3x + c \right) dx$	M1: Uses $yI = \int I \left(-\frac{26}{3} \cos 3x + c \right) dx$ A1: Correct expression	M1A1
	$= \frac{4}{3}e^{-2x}\cos 3x - 2e^{-2x}\sin 3x - \frac{1}{2}ce^{-2x} + B$	M1: Integration by parts twice A1: Correct expression	M1A1
8	$y = -\frac{1}{2}c + Be^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x$	Must start $y =$	3